
Robust Finger Interactions with COTS Smartwatches via
Unsupervised Siamese Adaptation

Wenqiang Chen
wenqiang@mit.edu

Massachusetts Institute of Technology
USA

Ziqi Wang, Pengrui Quan
wangzq312,prquan@g.ucla.edu

University of California, Los Angeles
USA

Zhencan Peng, Shupei Lin
zhencan.peng,shupei.lin@vibint.ai

VibInt AI
China

Mani Srivastava
mbs@ucla.edu

University of California, Los Angeles
USA

Wojciech Matusik
wojciech@csail.mit.edu

Massachusetts Institute of Technology
USA

John Stankovic
jas9f@virginia.edu

University of Virginia
USA

ABSTRACT
Wearable devices like smartwatches and smart wristbands have
gained substantial popularity in recent years. However, their small
interfaces create inconvenience and limit computing functionality.
To fill this gap, we propose ViWatch, which enables robust finger
interactions under deployment variations, and relies on a single
IMU sensor that is ubiquitous in COTS smartwatches. To this end,
we design an unsupervised Siamese adversarial learning method.
We built a real-time system on commodity smartwatches and tested
it with over one hundred volunteers. Results show that the system
accuracy is about 97% over a week. In addition, it is resistant to
deployment variations such as different hand shapes, finger activity
strengths, and smartwatch positions on the wrist. We also devel-
oped a number of mobile applications using our interactive system
and conducted a user study where all participants preferred our un-
supervised approach to supervised calibration. The demonstration
of ViWatch is shown at https://youtu.be/N5-ggvy2qfI.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; on-
body sensors; •Wearable sensing→ On-body Interaction.
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Figure 1: Three keyboard designs for fine-grained finger in-
teractions. (a) dial keyboard, (b) direction keyboard, (c) one-
hand control

1 INTRODUCTION
Recently, wearable devices have gained momentum and witnessed
phenomenal growth in popularity. They have become pervasive
in the technology industry and are promising computing plat-
forms [77]. Smartwatches and smart wristbands represent the dom-
inant force in the wearable ecosystem, bearing importance among
consumers owing to their diverse applications in the industrial sec-
tor, healthcare, and consumer electronics, among others. However,
by necessity, smartwatches are relatively small compared to tradi-
tional computing devices (e.g., laptops and smartphones), on which
input technologies cannot be easily replicated due to their size dif-
ferences. For example, "fat-finger" errors on smartphone screens
may not be a significant issue. However, this problem is greatly ex-
aggerated on a smartwatch screen. Inconvenient interaction limits
wearable devices’ computing functionality: many applications (e.g.,
SMS messages, manual selecting, and video games) barely usable
on smartwatches.

Currently, to overcome the limitations of a small screen, speech
recognition is one of the methods but is sensitive to noise levels in
the surrounding environments. Moreover, speech input is insecure
for sensitive information (e.g., password input) because it is suscep-
tible to eavesdropping. For the same reason, it is also intrusive to
the people surrounding the user. Recent works by FingerIO [47] and
LLAP [65] achieved millimeter-scale localization accuracy for fin-
gertip tracking, which enables users to write letters on ubiquitous
surfaces instead of touch screens. However, both of these papers
were implemented for smartphones. Also, writing letters is signif-
icantly slower than typing them and still has limited interactions
for small devices. [15]
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In this paper, we present a novel system termed ViWatch (see Fig.
1), which enables a user to interact with a smartwatch using finger
tapping/movement instead of a tiny touch screen. The key premise
behind the system is that the user’s finger tapping/movement rep-
resents a consistent vibration feature, which can be sniffed by the
wristband’s inertial measurement unit (IMU). The IMU is a stan-
dard sensor in all Commercial-Off-The-Shelf (COTS) smartwatches
and has low power consumption compared to other sensors in a
smartwatch, which are all run by a tiny battery with limited energy.
Moreover, the extended finger interface allows users to control
the small smartwatch more conveniently. This may unlock a wide
variety of upcoming wearable applications previously restricted by
a lack of interactive input.

Motivated by this, we design three finger interaction scenarios:
dial keyboard, direction keyboard, and one-hand control: Figure 1
(a) maps natural “landmarks” on hands (12 knuckles) into a dial
keyboard. Users can use this keyboard to dial numbers and type
sentences. Figure 1 (b) has four direction "buttons" on the back of
the hand and two "buttons" on the arm. This direction keyboard
can control a wide variety of applications, such as playing games or
switching menus. Figure 1 (c) shows six one-hand gestures. Users
can open the palm or make a fist to zoom in and zoom out a car
GPS map; swing the palm to the left/right to switch TV channels,
music, or slides; pinch three fingers to take a photo and snap the
fingers to take a video.

It is nontrivial to embrace the above vision, as the finger inter-
action system has some subtle deployment variations. For instance,
users have different hand shapes. Although these person-to-person
variations are relatively small, they may affect the fine-grained
finger-level system performance. Even if the classification model
can be fine-tuned to a specific user by asking him/her to do some
finger tapping and labeling, a user may, however, change the tap-
ping strengths from day to day, and the smartwatch may slip to
a different location on the wrist. If we require a user to calibrate
the system frequently to meet the variations, it is exhausting and
impractical [11]. Can we fine-tune the classification model using
unlabelled data generated while users are using the system? By
doing so, we eliminate the need to ask users to collect and label data
on purpose, but calibrate the system without their involvement.

To this end, we first conducted a preliminary study to understand
how variations affect finger interaction. To make the system work
under variations, we designed a deep learning model to train a gen-
eral model with adequate regularization to mitigate over-fitting. We
have taken measures to prevent over-fitting, but the accuracy for
completely new users (not seen) may still suffer because the train-
ing data collected from volunteers is insufficient and does not cover
all the data characteristics of every user on earth. Inspired by online
learning and domain adaptation, we then utilized an unsupervised
domain adversarial neural network to match the embeddings of
the unlabeled data with the embeddings of the labeled data from
volunteers. Furthermore, we optimized its domain discriminator
with Siamese contrastive training so it works for hundreds of do-
mains. Note that some research recently investigated variation
problems in IMU signal recognition of large-scale movements such
as coarse-grained human activities [7]. However, to the best of our
knowledge, there is no work that studies deployment variations
for fine-grained finger-level activities, which have a much more

subtle difference between activities, thus making it more challeng-
ing to adapt to variations. Our studies show that the solutions used
for coarse-grained human activity recognition does not work for
fine-grained finger interactions.

We built ViWatch as a prototype system for the Android smart-
watches. Our implementation achieves real-time finger interaction
input with no noticeable latency. We have posted an anonymous
demo video on YouTube (https://youtu.be/N5-ggvy2qfI). In this
video, we developed several representative exemplar applications
using ViWatch as the input surface. ViWatch is also an always-
available remote for smart glasses, smart TVs, and many other IoT
devices. We performed a three-step evaluation to test the perfor-
mance of ViWatch with 134 volunteers: an offline ablation study,
a real-time system evaluation, and a user experience study. The
offline study shows that ViWatch outperforms existing methods
and improves the model performance significantly on unseen users.
A real-time system also demonstrate that ViWatch is resistant to
deployment variations, such as different hand shapes, finger activ-
ity strengths, and smartwatch positions on the wrist. The results
in the user study indicate that ViWatch’s unsupervised method is
more convenient and user-friendly than supervised adaptation.

To summarize, our main contributions are:
• To the best of our knowledge, ViWatch is the first system en-
abling robust finger interactions under deployment variations
using unsupervised adaptation through a single IMU sensor in
smartwatches.

• We have designed a novel unsupervised Siamese adversarial deep
learning algorithm and built an end-to-end system using com-
mercial smartwatches to achieve real-time finger input without
noticeable latency. We have implemented various representative
applications using this system.

• We performed a user study with 134 volunteers and conducted
thorough evaluations under various types of interference. Evalu-
ation results show significant performance improvement com-
pared to previous systems.

2 RELATEDWORK
In this section, we first introduce existing finger interaction systems.
Second, we explain state-of-the-art algorithms to overcome domain-
shift variation problems in different application tasks. The table 1
shows that ViWatch is the first robust finger interaction in COTS
smartwatches using only a single IMU sensor under deployment
variations using unsupervised adaptation.

Methods ViWatch [15, 31] [11] [74, 77] [40, 70]
COTS Smartwatches ! # ! ! !

Single IMU Sensor ! # ! # !

Finger Level ! ! ! ! #
Unsupervised Adaptation

to Variations ! # # # #

Table 1: Related work of ViWatch.

2.1 Finger Interactions
Finger interaction is essential for wearable devices. A variety of
approaches allow finger interaction by designing new skin-worn
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hardware [26, 31, 32, 34, 38, 48, 60, 66, 69, 75, 75]. There are many
different techniques , e.g., electronic signatures [44, 51, 78], vibra-
tions and sounds [9, 10, 13, 14, 16–21, 25, 31, 35, 37, 46, 68], and
even optical projections [30, 41]. SkinButtons [41] proposes using
several tiny projectors embedded into the smartwatch to render
icons on the skin. iSkin [66] proposes a thin sensor overlay with
biocompatible materials for touch input on the body. SkinTrack
[78] leverages a ring to emit RF signals and measures the phase
differences of received signals to track the finger. SkinMarks [67]
designs conformal on-skin sensors for precisely localized input and
output on fine body landmarks. WatchSense [59] utilizes a depth
sensor for on-skin input, which is usually not available on the com-
modity smartwatch. Some research [15, 31] classifies the tapping
with machine learning algorithms using tapping-induced vibra-
tions. For example, Skinput [31] appropriates the human body for
bio-acoustic transmission, enabling the skin to be an input surface
with an arm-worn sensor-array. ViType [15] customizes a single
vibration sensor and employs a fully connected neural network to
distinguish different finger tapping induced vibrations. The afore-
mentioned approaches, however, require dedicated hardware and
have limited deployment capability.

There are some works using smartwatches for human activ-
ity [6, 8], hand location [27, 49], gesture [5, 40, 42, 43, 53, 55, 76]
or finger [45] classification. Most recently, some research [74, 77]
achieved finger-tapping interaction with commercial smartwatches.
For example, iDial [77] and Tapskin [74] use microphones and the
IMU in a smartwatch to classify different finger tapping induced
sound with a Support Vector Machine (SVM) as the classifier. How-
ever, the microphone is sensitive to acoustic noise. AcouDigits [81]
used ultrasonic sensors to track fingers on the skin, but it was
energy-intensive. The most related recent works are Taprint [11]
and [70]. [70] enabled users to customize hand gestures through
supervised learning. Taprint [11] mainly focus on security and au-
thentication using finger activities. While Taprint [11] also offers
keyboard input, it requires users to collect and label more data ev-
ery time they change their tapping behaviors. In contrast, ViWatch
utilizes unsupervised siamese adversarial training and does not
necessitate users to label any additional data.

Overall, ViWatch only uses a single IMU sensor in COTS smart-
watches to classify finger interactions without instrumenting any
dedicated sensors, thus being more efficient and accessible. Most
importantly, this is the first work making a novel contribution to
robust finger interaction systems under deployment variations via
unsupervised Siamese learning.

2.2 Battling Variations
As methods to overcome the problem of data in different domains,
siamese networks, generative networks, transfer learning, and do-
main adversarial training have been applied. TouchPass [71] has
used siamese networks to achieve behavior-irrelevant on-touch
user authentication. Generative adversarial networks (GANs [56])
have been successfully introduced to sensor-based human activity
recognition [72]. Additionally, GANs have been used to augment
biosignals [28] and in IoT [72]. Extending the conventional GAN ap-
proach, in [52], a data augmentation technique for time series data
with irregular sampling is proposed utilizing conditional GANs.
Transfer learning has been demonstrated to be useful in activities

recognition [22], localization [50], crowdsourced mobile activity
learning [80], and human activity recognition (HAR) [64]. Previous
studies use transfer learning to translate training data, features, or
fine-tuning models for mobile sensor data. Rey et al. [54] discussed
the case that the new domain just happened to contain the old
one. Hu et al. [33] developed a bridge between the activities in
two domains by learning a similarity function via Web search for
HAR. ViFin [12] fine-tuned finger writing data of target users from
source users. However, it requires target users to provide labeled
data, thus it is exhaustive and user unfriendly. In contrast, ViWatch
uses unlabelled data in the target domain from users’ daily usage.

Ourwork is related to domain adversarial training approaches [62,
63, 79]. [23] is the first domain adversarial training approach pro-
posed to tackle the unsupervised domain adaptation problem. Zhao
et al. [79] propose a conditional adversarial architecture to retain
the information relevant to the predictive task when removing
the domain-specific information. Although this architecture is ef-
fective, it does not consider suppressing the domain shift further
with unlabeled data. Besides, most of the domain adversarial learn-
ing solutions have only been used in image classification [24, 57]
or large-scale movements such as coarse-grained human activi-
ties [7, 29].

However, there is no work that studies deployment variations for
fine-grained finger interactions. Fine-grained finger interactions
have a much more subtle difference between activities, thus making
it more challenging to adapt to variations. Our studies show that
the solutions used for coarse-grained human activity recognition
do not work for fine-grained finger interactions. To the best of
our knowledge, no work so far has designed a novel unsupervised
Siamese adversarial learning for finger interaction and this work is
the first to do so.

3 PRELIMINARY STUDY
In this section, we first explain why tapping on different locations
on the hand is distinguishable and discuss the physical phenomenon
and insights of vibration-based finger tapping systems. (Section 3.1)
Then, in Section 3.2, we build a mathematical model to analyze how
variations (tapping strengths, sensor positions, and hand shapes)
affect the recognition performance. Then we conduct experiments
to further prove that deployment variations lead to corruption of
finger interaction system performance in section 3.3. The exper-
iments show that it is vital to achieve a robust finger interaction
under deployment variations.

Figure 2: Physical modeling of deployment variations.
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Figure 3: Differing tapping strengths, smartwatch positions,
and hand shapes influence system performance.

3.1 Vibration Dispersion
The pivotal physical phenomenon for IMU-based on-body tapping
recognition is vibration dispersion. When the back of the hand is
tapped (Figure 2), it results in vibrations of diverse frequencies,
traveling through multiple paths to the IMU sensor in the smart-
watch. Owing to vibration dispersion, the arrival time discrepancy
between distinct frequency components expands with increasing
propagation distance. Moreover, higher frequencies preferentially
propagate through bone over soft tissue, enabling energy trans-
mission over greater distances [15]. The intricate hand structure
further amplifies vibration dispersion. These frequency compo-
nents, post multi-path propagation, interfere to generate unique
vibration profiles at various hand locations.

3.2 Mathematical Modeling Analysis
To comprehend how deployment variations influence vibration-
based finger tapping systems, we devise a mathematical model.

Given the intractability of mathematically modelling complex
vibration systems such as the human body, we initiate a single-
degree-of-freedom model depicted in Figure 2 to articulate basic
principles. In this model, a tapping point incorporates a mass el-
ement (a rigid body with a constant mass 𝑚), a spring element
(defined by constant 𝑘), and a damping element (denoted by a
damper with damping coefficient 𝑐) [11].

The application of external force to the rigid body leads to vertical
displacements. As per Newton’s second law of motion, we have,

𝐹 (𝑡) =𝑚𝑎(𝑡) + 𝑘𝑥 (𝑡) + 𝑐𝑣 (𝑡), (1)

where 𝐹 (𝑡) denotes the external force, 𝑣 (𝑡) the velocity, 𝑥 (𝑡)
the vertical displacement, 𝑐 the damping coefficient, 𝑘 the spring
constant, and𝑚 the mass. This relation can be further expressed as,

𝐹 (𝑡) =𝑚
𝑑2𝑥 (𝑡)
𝑑𝑡2

+ 𝑘𝑥 (𝑡) + 𝑐 𝑑𝑥 (𝑡)
𝑑𝑡

. (2)

A finger tapping vibration has two phases. The first phase in-
volves quick contact between the finger and the rigid body, viewed
as forced vibration with a constant force 𝐹 (0). Post the initial tran-
sient disturbance, we enter the second phase: free vibration, where
the system vibrates independently after finger-body contact ceases.

In the forced vibration phase, applying the Fourier transform to
both sides of (2), we get,

Figure 4: (a) Vibrations from the same key are consistent. (b)
Vibrations from the two keys are different (Up). Vibrations
from the same key are different because of person-to-person
variations. (Down).

𝐹 (0)
𝑗𝑤

(1 − 𝑒− 𝑗𝑤Δ𝑡 ) = −𝑤2𝑚𝑋 (𝑤) + 𝑘𝑋 (𝑤) + 𝑗𝑤𝑐𝑋 (𝑤), (3)

yielding,

𝑋 (𝑤) = 1 − 𝑒− 𝑗𝑤Δ𝑡

− 𝑗𝑚

𝐹 (0)𝑤
3 − 𝑐

𝐹 (0)𝑤
2 + 𝑗𝑘

𝐹 (0)𝑤
, (4)

where 𝑋 (𝑤) is the spectrum of the vertical vibration signal, and
𝑤 the vibration frequency at the tapped position.

Next, we examine the horizontal vibration during the free vibra-
tion phase. As vibration signals propagate horizontally from the
tapping location to the smartwatch, they undergo attenuation. This
attenuation, modeled as a constant 𝑒−𝛼𝑑 in [15], where 𝑑 is the
propagation distance and 𝛼 the attenuation coefficient, allows us to
derive the vertical vibration signal at the smartwatch location as,

𝑌 (𝑤) = (1 − 𝑒− 𝑗𝑤Δ𝑡 )𝑒−𝛼𝑑

− 𝑗𝑚

𝐹 (0)𝑤
3 − 𝑐

𝐹 (0)𝑤
2 + 𝑗𝑘

𝐹 (0)𝑤
. (5)

Despite unique patterns generated by tapping at various loca-
tions due to vibration dispersion, equation (5) highlights several
parameters (variations) impacting this phenomenon. For instance,
varying hand shapes affect𝑚, 𝑐 , and 𝑘 [58], tapping strength alters
𝐹 (0), and smartwatch position changes 𝑑 . This explains why finger-
tapping vibration recognition performance is disrupted under these
variations.

3.3 Investigative Experiments
To ascertain the extent to which deployment variations impact
system performance, we conducted experiments with five partic-
ipants, comprising two females, each with differing hand shapes.
The smartwatch was worn comfortably on the left wrist, and the
hand was kept suspended in the air. Each participant was first asked
to randomly tap keys according to the keyboards in Figure 1, deliv-
ering 40 taps per key. The data collated in this step constitutes the
"anchor dataset". Subsequently, the experiment was repeated with
stronger tapping strength and after repositioning the smartwatch
by a 2 cm displacement.
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To analyze model accuracy for the anchor dataset, we partitioned
samples from each key/gesture into a 3:1:1 ratio for the training, val-
idation, and test sets, respectively. Individual fully connected neural
network models were trained for each participant. As indicated in
Figure 3(1), the average accuracy was a robust 95% across three
keyboards. Yet, when models were trained on the anchor dataset
and tested on the stronger tapping strength dataset, the average
accuracy fell to 50%, as depicted in Figure 3(2). Analogously, models
trained with the anchor dataset but tested with a dataset after a
2 cm smartwatch displacement recorded an average accuracy of
only 69% across the three keyboards, as shown in Figure 3(3). A
general model trained across different users (hand shapes) yielded
a leave-one-participant-out (LOO) accuracy of merely 45%, as in
Figure 3(4). This poorer accuracy highlights the complexities added
by varying hand shapes, tapping strengths, and smartwatch posi-
tions. In essence, variations in tapping strength, smartwatch
placement, and hand shapes significantly affect system per-
formance.

Examination of the signal profile in the time domain, via plotting
the Z-axis accelerometer vibration signals from a typical smart-
watch (Figure 4), reveals consistency in vibration waveforms from
the same key (Figure 4(a)). While two different keys from one per-
son produce distinct waveforms (Figure 4(b), upper part), waveform
differences arise between two users even for the same key (Figure
4(b), lower part). This variability is observable between any samples
with variations.

These investigative experiments highlight that, despite consis-
tent vibrations from tapping the same key, person-to-person varia-
tions (hand shapes, tapping strengths, smartwatch positions) sig-
nificantly degrade overall performance. Therefore, it is crucial to
develop a classification model capable of distinguishing between
finger interactions while maintaining robustness against these vari-
ations.

4 VIWATCH
In the preliminary experiments described in Sec. 3, we observe that
the deployment variations affect the system performance signifi-
cantly. An ideal classification model should be able to discriminate
the difference between finger activities and be resistant (above 95%
accuracy) to variations. In this section, we describe our design of
the robust finger interaction system under deployment variations.

Our design is elaborated in the following steps as shown in Fig-
ure 5: We first pre-processed the vibration signals. (Sec. 4.1) Then,
we designed a CNN-based deep learning model to train a general
model with adequate regularization to mitigate over-fitting. (Sec.
4.2) Although we have taken measures to combat overfitting, the
accuracy for completely new (unseen) users still suffers due to the
fact that the training data from volunteers is insufficient and does
not cover every user’s data characteristics on earth. Our idea is
to improve the model continuously by using the data generated
by users’ daily use in an unnoticeable way, based on online learn-
ing and domain adaptation. However, these daily generated data
have no labels. Thus, we utilize an unsupervised domain adver-
sarial neural network (DANN) to match those variations (Sec. 4.3).
Unfortunately, it is impractical to separate hundreds of domains
with cross-entropy loss. To address this problem, we optimized its
domain discriminator with Siamese contrastive training (Sec. 4.4).

Figure 5: ViWatch architecture.

With these steps, we achieve a robust finger interaction with COTS
smartwatches under deployment variations.

4.1 Signal Pre-Processing
ViWatch uses energy-based double thresholds segmentation [15] to
capture the tapping-induced vibrations. When the signal energy is
higher than the thresholds, the time is defined as the point at which
the tapping vibration starts. In terms of the segment ending point,
we set it to 0.5s after the starting point. This is because the duration
of signals in this application is usually around this value based on
our observations. Human mobility such as walking often causes
body vibration, which needs to be denoised. Based on the short time
Fourier analysis, we observe that the vibration caused by human
mobility is mostly less than 10 Hz. Therefore, a 20 Hz Butterworth
high pass filter is sufficient to remove noise from the captured
vibration signal. Through this filter, the direct current component
such as gravity can also be removed. In the finger movement input
process, the users need to turn on the touchscreen first and start
the finger interaction input with an activate gesture [12]. When
a user types on a laptop keyboard or washes dishes, he/she may
not turn on the touchscreen of the smartwatch. However, in the
text input process, some actions when typing on the back of one’s
hand (e.g., scratching hands or picking up objects) may trigger false
positives. We used SNR based threshold [11] to remove the noise.
Afterwards, ViWatch normalizes the magnitude of signals using
the Z-score normalization technique, and aligns signals by finding
the TDOA (Time Difference of Arrival) with the GCC (Generalized
Cross-Correlation) algorithm [39]. Last but not the least, ViWatch
extracts weighted features based on position-related points with
Fisher score selection. [11]

4.2 Backbone Model
A few pioneer works have explored the problem of classifying fin-
ger tapping. They have proposed using Support Vector Machines
(SVM) [74, 77], k-Nearest Neighbour (kNN) [11], and fully con-
nected neural networks (ANN) [15] as classifiers to distinguish
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different keys. While the aforementioned methods achieved suc-
cess in their application scenarios, those models are optimized for
a single user under restricted conditions. For a broad-scale deploy-
ment, it is not practical to collect large amounts of labeled training
data from a single user. Also, these models fail to meet expectations
during real-world deployments: system performance significantly
degrades due to deployment variations, such as hand shapes, tap-
ping forces, and device positions.

Figure 6: ViWatch Backbone Convolutional Neural Network
Architecture.

With the collection of a larger dataset that contains large amount
of data contributors, we propose using a Convolutional Neural Net-
work (CNN) as the backbone model of ViWatch, whose structure is
shown in Figure 6. We name it "backbone" as the following model
design will be built on top of it. Here we provide an intuition of the
model structure design: While the model needs to be sufficiently
complicated in order to capture the dynamics of tapping behaviors
of a large population, over parameterization could lead to signifi-
cant over-fitting that downgrades the model’s testing performance.
Guided by the trade-off mentioned above, the proposed backbone
CNN consists of five consecutive convolutional blocks and three
fully connected blocks. We employ batch normalization within each
block to speed up the training as well as to provide the regulariza-
tion that reduces over-fitting [36]. We determine that additional
dropout layers are not necessary after some ablation studies. The
input to this CNN structure has dimensions of 𝑁 × 43× 6, where 𝑁
is the batch size, 43 are the timesteps, and 6 are the IMU data axes.
The output is a multi-class one-hot prediction.

4.3 Unsupervised Adaptation
In the previous section, we discussed our efforts on training a back-
bone model, which aims to create an "average" model for all users.
However, the model is only as good as its training data. If the la-
beled training dataset fails to cover a considerable diversity in the
population, the model trained on it may encounter generalization
difficulties and have poor accuracy for a new (unseen) user. One of
the most intuitive model adaptation methods is to collect a small la-
beled dataset from the end user and fine-tune the model parameters
to cater to user habits. However, users need to frequently label more
data every time they change the tapping behaviors. Unfortunately,
this method increases the burden on the product users, and users
are often reluctant to follow complicated instructions to collect
their own label dataset [11]. However, we notice that the user’s
daily usage of ViWatch will generate abundant unlabeled data. Can
our model adaptation process benefit from unlabelled data of the
target user?

To address this question, we apply unsupervised domain adver-
sarial training of neural networks (DANN) [24]. The high-level
intuition is that DANN has two neural networks. It has a discrim-
inator to identify different users and another classifier to classify

different finger activities. The two models are trained together in
a zero-sum game, adversarial. Then it reverses the gradient of the
discriminator so that DANN ONLY classifies different finger activi-
ties but can NOT identify different users. In this way, the final layer
only has finger activity patterns while no variations.

Figure 7: Architecture for user-dependent model adaptation.
5

We provide a more detailed description of our user-dependent
model adaptation architecture in Figure 7. This architecture consists
of three major components. The feature extractor𝐺 𝑓 and the key
classifier 𝐺𝑐 are just the early and late layers of our backbone
CNN model discussed in Section 4.2. The third component is a
domain discriminator 𝐺𝑑 . The features extracted from 𝐺 𝑓 are used
by 𝐺𝑐 to classify the tapping keys. The features, along with the
classification results, are also used by the domain discriminator𝐺𝑑

to determine if a feature vector comes from the source domain or
the target domain. The three components form a structure similar to
a generative adversarial network (GAN), whose expected behavior
is to maximize the tapping key classification accuracy and minimize
the accuracy of domain classification.

In Figure 7, direct arrows indicate the forward pass, and curved
arrows indicate the back propagation pass. During the training
time, we first split the whole smartwatch tapping dataset into a
training set 𝑆𝑡𝑟𝑎𝑖𝑛 , a validation set 𝑆𝑣𝑎𝑙𝑖𝑑 , and a left-out user. Here
all the data in 𝑆𝑡𝑟𝑎𝑖𝑛 form the source domain, and the data from
the left-out user form the target domain. In the target domain,
we select a part of the data and remove their labels to use them as
the unlabeled training data𝑇𝑡𝑟𝑎𝑖𝑛 . The rest data of the left-out user
is used to test the model performance, and we denote them with
𝑇𝑡𝑒𝑠𝑡 .

In the forward pass, all the data entries in 𝑆𝑡𝑟𝑎𝑖𝑛 and 𝑇𝑡𝑟𝑎𝑖𝑛
are input to the DANN network. For each data entry, we obtain
a tapping key prediction 𝑦 and a domain prediction 𝑑 . The loss
consists of three parts: the key classification loss 𝐿𝑠𝑜𝑢𝑟𝑐𝑒𝑦 for 𝑆𝑡𝑟𝑎𝑖𝑛
only (target domain data have no labels), the domain classification
loss 𝐿𝑠𝑜𝑢𝑟𝑐𝑒

𝑑
and 𝐿𝑡𝑎𝑟𝑔𝑒𝑡

𝑑
for 𝑆𝑡𝑟𝑎𝑖𝑛 and 𝑇𝑡𝑟𝑎𝑖𝑛 separately. Then the

threemodules are trained jointly using back propagation as depicted
in Figure 7. When the gradient is passed from 𝐺𝑑 to 𝐺 𝑓 , a gradient
reverse layer is applied to change the symbol of the gradients. Here
we provide some intuition about the gradient reverse layer: By
design, 𝐺 𝑓 should maximally support 𝐺𝑐 while deceiving 𝐺𝑑 . In
other words, we want the extracted features to be domain-agnostic.
Thus a bad performance of the domain discriminator should be
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desired for the feature extractor𝐺 𝑓 . Note that no gradient is passed
from the domain discriminator 𝐺𝑑 to the key classifier 𝐺𝑐 . Finally,
the optimization problem can be written as

min
\ 𝑓 ,\𝑐

max
\𝑑

𝐿 = 𝐿𝑠𝑜𝑢𝑟𝑐𝑒𝑦 − 𝛼

(
𝐿𝑠𝑜𝑢𝑟𝑐𝑒
𝑑

+ _𝐿
𝑡𝑎𝑟𝑔𝑒𝑡

𝑑

)
, (6)

where \ 𝑓 , \𝑐 , and \𝑑 are the parameters of the feature extractor,
key classifier, and domain discriminator, respectively. We evaluate
the adapted model (only 𝐺 𝑓 + 𝐺𝑐 ) performance on target domain
test data 𝑇𝑡𝑒𝑠𝑡 .

Using the domain adversarial training introduced in this sec-
tion, we provide a better user experience for the target user by
adapting the backbone model to the target user’s habits. During
real-world deployments, the 𝑇𝑡𝑟𝑎𝑖𝑛 should be the unlabeled data
generated from the daily usage of ViWatch. If the user allows, the
daily unlabeled tapping data will be collected and uploaded. The
backbone model parameter is then adapted and pushed back to
the smartwatches as application updates once DANN training is
finished.

4.4 Siamese Optimization of DANN
The previous section introduced how we employ DANN to address
variations of finger interactions. In our experiments, we found
that the proposed DANN performance gain is limited. First, we
re-examine the intuition of applying DANN to solve the variation
problem in sensor data classifications: the DANN method aims to
match the embeddings of the unlabeled new data (target domain)
with the embeddings of the training data (source domain). This
setting is optimal if the source data is collected from one environ-
ment and the target data is collected from another environment.
However, in our settings, all the user data in the training set form
the source domain, and the unlabeled data from one new user form
the target domain. In other words, the target domain is the data
distribution from a single user, while the source domain distribution
is drawn from a mixture of hundreds of users. This skewness in
domain definition might make the domain matching problem more
difficult.

Figure 8: Architecture for optimizing DANN using Siamese
method.

An intuitive thought to solve this domain skewness problem will
be to assign one domain to each user in the training set, which will

convert the task of domain discriminator𝐺𝑑 from binary classifica-
tion to multi-class classification. However, this task is too difficult
for 𝐺𝑑 , since the number of classes (e.g. hundreds of users) grows
linearly with the training dataset size, and the decision boundary is
exceptionally complicated. Luckily, we realize that we do not need
to identify hundreds or thousands of users; in contrast, we only
need to know if a sample is from the same user or from different
users. Therefore, we modify the DANN and optimize its domain
discriminator with Siamese contrastive training.

The updated Siamese-DANN structure is shown in Figure 8.
Specifically, we change the final layer of the domain discrimina-
tor 𝐺𝑑 to a fixed embedding consists of 16 nodes and remove the
softmax layer used for classification. During the DANN training,
the tapping classification loss 𝐿𝑦 is calculated and back-propagated
exactly the same as Sec 4.3 when the input data are labeled. The
domain loss 𝐿𝑑 , on the other hand, is calculated as follows: first,
from each training batch, we randomly sample pairs of data from
the union of the training set 𝑆𝑡𝑟𝑎𝑖𝑛 and the target user data 𝑇𝑡𝑟𝑎𝑖𝑛 .
If the two tapping data come from the same user, the pair is labeled
as a positive pair (𝑑 = 1). Meanwhile, a pair with samples from
different users will be labeled as negative (𝑑 = 0). We make sure
that the positive and negative pairs are balanced, and at least half
of the 𝑇𝑡𝑟𝑎𝑖𝑛 data (from the target user) is used once in this gen-
eration. Secondly, we feed the two time series in each pair to our
model separately, and at the output of the domain discriminator𝐺𝑑

we will get two 16-dimension embeddings. Intuitively, for a model
that recognizes each user, if it is a positive pair (time series of the
same user), we want to encourage their embeddings to be close to
each other. Otherwise we want their distance to be farther than a
threshold. The final resulting contrastive loss is given by

𝐿𝑑 = 𝑑 · | | (𝑓 (𝑥1) − 𝑓 (𝑥2)) | |2 + (7)
(1 − 𝑑) ·𝑚𝑎𝑥 (0, 𝛿 − ||(𝑓 (𝑥1) − 𝑓 (𝑥2)) | |2) , (8)

where 𝑓 () is the Feature Extractor 𝐺 𝑓 , 𝑑 = 1 for positive pairs,
𝛿 is the threshold, and the embedding distance is measured with
the L2 norm. The other parts like the gradient reverser layer and
parameter updates are all the same as in Sec. 4.3.

5 SYSTEM IMPLEMENTATION
We have implemented ViWatch as a standalone application pro-
gram on a commodity Android smartwatch, the Huawei Watch 2
(with a 1.2 GHz Quad-Core processor and a RAM with 512 MB). Vi-
Watch utilizes the built-in accelerometer and gyroscope (InvenSense
MPU6515) and acquires the motion readings through existing An-
droid Wear APIs to detect the finger tapping induced vibrations.
The sampling rate through the APIs is 100 Hz. We trained the neu-
ral network models using Pytorch 1.5.1 on a desktop computer
which has AMD Ryzen 7 2700X Processors and an NVIDIA TITAN
X Graphics Card. PyTorch supports an end-to-end workflow from
Python model training to Android model deployment (via the Py-
Torch Android API [61]). After training the model, we implement
all the components of our system including signal processing and
neural network classification on a COTS smartwatch to classify
the finger interactions in real-time. To collect users’ unlabeled data
during daily usage for updating models, we used network socket
with IP addresses to send collected data from the smartwatch to
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the server and send back updated models to the smartwatch. And
we also built some representative applications on the smartwatch
using ViWatch (see section 7.3.1).

In the training process, the feature extractor 𝐺 𝑓 and the key
classifier 𝐺𝑐 (CNN backbone) are pre-trained on 𝑆𝑡𝑟𝑎𝑖𝑛 for 600
epochs. The training is stopped early if the validation accuracy
is greater than 50%. For each test user, the DANN training goes
on for 33 epochs. Similar to the backbone model training, we use
early stopping, where the model with the best performance on
the source domain validation set 𝑆𝑣𝑎𝑙𝑖𝑑 is saved. For the current
implementation, the average end-to-end latency is 0.2 seconds from
tapping to the output display. The initial backbone general model
training process (100 participants’ data) in the server takes about
109 seconds on average for each keyboard. The DANNmodel update
process takes 44.5 seconds per user (with 30 unlabeled samples for
each key). So the DANN adaptation is scalable with more users and
more unlabeled data.

We measure the power consumption of the smartwatch using
"Battery Historian" from Google. Specifically, We measured three
states: (1) idle with the display on, (2) ViWatch with power on,
but without tapping input, and (3) ViWatch with power on and
continuous tapping. Since the platform can only measure the per-
centage of the battery consumption, we record the time duration
for consuming 1% of the battery for each state. Each state’s average
resulting time duration is 215 s, 190 s, 178 s, respectively. Given the
battery capacity and the working voltage, we calculate the aver-
age resulting power consumption of each state, which is 247mW,
284mW, 298mW, respectively. Thus, ViWatch only consumes an
additional 51mW of power on top of the base power consumption.
For comparison, we also conduct the measurement when running
a pedometer application, resulting in the power consumption of
288mW. Thus, the power consumption of ViWatch is similar to the
typical application running on a smartwatch.

6 EXPERIMENTAL SETUP
We conducted three primary experiments for evaluations. The
smartwatch is worn on the left wrist in a comfortable manner with
the hand in the air. Unless otherwise specified, all the experiments
are launched based on the default setting discussed as follows. The
study was approved by the Institutional Review Board (IRB-SBS
4166).

1) Offline dataset: We recruited 114 participants (46 of them are
female) in the age range between [18, 51]. Their body mass indexes
(BMIs) range from 19.12 (lean) to 29.58 (obese). To demonstrate the
basic performance of ViWatch, all participants were asked to tap
on three keyboards as shown in Figure 1 randomly to generate the
basic offline dataset (with 114 participants × 24 keys × 40 times
= 109440 samples in total). (For easier explanation, we use "key"
to refer to both "location" and "gesture"). Participants are allowed
to tap casually with any posture and strength. The performance
of this dataset is evaluated in the following Section 7.1 "Offline
Evaluations".

2) Real-time test set: Then we recruited an additional 20 par-
ticipants to use these three keyboards in real time under different
conditions (see section 7.2). These participants are in the age range
between [18, 42]. Their body mass indexes (BMIs) range from 17.63

(lean) to 28.12 (obese). Before using ViWatch, the user was given
a 10-minute warm-up period to get familiar with the system. For
each condition, participants were asked to tap 120 random keys
we provided as a test set for three keyboards separately. The re-
sults of these experiments are presented in Section 7.2 "Real-time
Evaluation".

3) User study: We also asked these 20 participants to try various
applications we developed using ViWatch (10 minutes for each
application) and fill out questionnaires to present their user experi-
ences. (see Section 7.3)

7 EVALUATION
In this section, we first study the performance of ViWatch com-
paring to State of the Art (SOTA) methods on the offline dataset
from 114 volunteers in Section 7.1. We further perform real-time
experiments in which an additional 20 new volunteers produce un-
labeled data during daily usage in one week. In the real-time exper-
iments (Section 7.2), we investigate how Siamese adversarial learn-
ing improves accuracy over time and against different variations.
Third, we evaluate ViWatch’s usability and workload based on the
standard System Usability Scale (SUS) and NASA Task Load Index
(NASA-TLX) to compare to the supervised calibration in Section 7.3.

7.1 Offline Evaluations
In this section, we evaluated ViWatch performance on an offline
dataset collected from 114 users. In order to understand the effective-
ness of different techniques and fairly compare different methods,
we conduct a leave-one-out evaluation during all the experiments.
One of the users is left out to be the new user (target domain).
The target domain data is then split into 𝑇𝑡𝑟𝑎𝑖𝑛 (label-removed, for
DANN training) and 𝑇𝑡𝑒𝑠𝑡 (for system performance evaluation). No
matter which keyboard setting we are using, each user has 40 trials
for each tapping key. By default, 30 of them will go to 𝑇𝑡𝑟𝑎𝑖𝑛 , and
10 will go to 𝑇𝑡𝑒𝑠𝑡 unless otherwise specified. The rest of the 113
users form the training set 𝑆𝑡𝑟𝑎𝑖𝑛 (100 users) and the validation
subset 𝑆𝑣𝑎𝑙𝑖𝑑 (13 users). This process is repeated for all 114 users,
and the average accuracy is reported. To ensure a fair comparison
and reproducibility, we repeat all the experiments with random
seeds 0, 100, 200, 300, and 400 and take an average.

7.1.1 Evaluation of ViWatch compared to SOTA. First, we evaluated
the ViWatch model we proposed. Figure 9 shows the LOO accu-
racy of the confusion matrix for the three keyboards. The average
accuracy of keyboards A, B and C are 93.89%, 93.99%, and 94.40%,
respectively. We observed that the closer locations lead to lower
accuracy (e.g., Key "0" and Key "#").

We also compared ViWatch to existing finger interaction meth-
ods proposed in previous works, including ViType (a fully con-
nected neural network) [15], iDial (SVM) [77], and Taprint (kNN) [11].
Laput, etc. [40] also used a fully connected neural network to clas-
sify fine-grained hand activities.

As shown in Figure 10, the results show that ViWatch signifi-
cantly outperforms the baselines of existing IMU sensing methods
by a margin of more than 20% for all three keyboards. The average
testing accuracy of ViWatch is around 94% while that of the base-
lines are all below 74%. We believe that the variations cause the
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Figure 9: Confusion matrix of three keyboards.

performance reduction using the classification algorithms in exist-
ing works of IMU sensing. The Siamese adversarial deep learning
with extra unlabelled data significantly improves model accuracy.

We then do an ablation study for the cascaded optimization
techniques we propose in Section 4. For Section 4.3, there are two
approaches of performing the DANN training using Eqn. (6). First,
we can treat the data from the target user as the target domain and
all training data (𝑆𝑡𝑟𝑎𝑖𝑛) as the source domain. We call this method
DANN 2-Domain model, which is the default method introduced in
Section 4.3. Alternatively, we can also treat each user as a separate
domain for the domain discriminator. Since we have 100 users in
the source domain and one user for testing in the target domain,
we refer to it as DANN 101-Domain model.

In this work, we alsomade other efforts to improve the generaliza-
tion ability of the backbone CNNmodel (in Sec 4.2) by implementing
some existing algorithms for variability challenges proposed in the
literature on human activity recognition. First, we employed Time-
series Generative Adversarial Networks (TimeGAN [73]) to gener-
ate synthetic data to enlarge the training dataset and create more
diversity. Second, we used a model of a UCI Human Activity Recog-
nition dataset [4], and fine-tune with our finger activity dataset by
freezing the weights. Third, we fused the center loss directly (e.g.
Siamese) [3, 71] in the backbone model to minimize the intra-class
variations while keep the features of different classes separable.

We compare the performance of the backbone CNN model,
TimeGan, transferred model, Siamese NN, DANN 2-Domain model,
DANN 101-Domain model, and the Siamese-DANN model (Sec 4.4).
As shown in Figure 11, the accuracy of the backbone model we
designed is 90%. TimeGAN did not improve the performance of
the backbone model. It is likely that TimeGAN only learns the
dynamics from the data of the known training user while it did
not generate any information for unseen users. The transferred
model failed to improve any accuracy due to the difference between
the data sources: IMU data from the coarse-grained human activi-
ties and IMU data from the subtle, fine-grained on-body tapping
vibrations can be very different. Siamese NN did not work either.
We believe that it is because the data has significant intra-class
variations across different users while different fine-grained tap-
ping locations/gestures only have subtle differences. With extra

unlabeled data, we observe that the DANN 2-Domain model only
has a little improvement (1.5%) compared to the backbone model.
This result shows that the skewed domain definition counteracts
the benefits of DANN training. The DANN 101-Domain model even
has a lower accuracy than the DANN 2-Domain model. This re-
sult shows that it may be impractical for domain discriminators
to separate hundreds of domains with cross-entropy loss due to
over-complicated decision boundaries. If we collect a larger scale
dataset (e.g., thousands of users’ data), this problem may be worse
for DANN. On the other hand, the Siamese DANN we proposed
(DANN optimized with the Siamese contrastive loss) has better
accuracy (94%). Note that this accuracy can be further improved
with more unlabeled data in the real world, which we provide as ad-
ditional evaluations in the rest of the paper. Thus, we can conclude
that, our proposed Siamese-DANN algorithm is better customized
than the baselines for the IMU classification problem and improves
the accuracy with more unlabeled data collected from daily usage.
Note that we compare other supervised domain adaptation
algorithms in Section 7.3: Applications and User Study.

7.1.2 Sizes of labeled training data. We alter the size of the back-
bone training data 𝑆𝑡𝑟𝑎𝑖𝑛 when evaluating the effectiveness of
Siamese DANN training. We start from a small training population
of 1 user, and gradually increase the training users to 20 users,
40 users, 60 users, 80 users, and 100 users, so that the backbone
training sets cover a different proportion of the whole population.

We plot the statistics of the above experiments in the box plot
shown in Figure 12. The blue bars show the statistics of the testing
accuracy of the backbone model, and the yellow bars show that
of the Siamese adversarial training model. On each box, the cen-
tral mark indicates the median, and the bottom and top edges of
the box indicate the 25th and 75th percentiles, respectively. From
the results, we have the following observations. First, the model
accuracy increases monotonically as more labeled training data is
available, which is intuitive as more data leads to better machine
learning models. Second, the Siamese adversarial training model
outperforms the raw backbone CNN models in all cases – the yel-
low bars are always higher than the blue ones. This Siamese DANN
adaption can provide a stable 4%~11% average performance gain.

7.1.3 Sizes of unlabeled training data. We also further explored the
amount of unlabeled target user data needed for Siamese adversar-
ial training to become effective. In other words, we evaluated the
effect of the size of 𝑇𝑡𝑟𝑎𝑖𝑛 on the performance of Siamese adversar-
ial adaptation. We fix the sizes of source domain training set 𝑆𝑡𝑟𝑎𝑖𝑛
to be 50 users and 100 users, and we gradually increase the size of
𝑇𝑡𝑟𝑎𝑖𝑛 from 0, 5, 15, 25 to 35 samples for each key. The mean testing
accuracies are shown in Figure 13: the testing accuracy gradually
increases as more unlabeled training data (𝑇𝑡𝑟𝑎𝑖𝑛) are used. This
trend remains the same no matter whether the training set 𝑆𝑡𝑟𝑎𝑖𝑛
contains 50 or 100 users. In general, the Siamese DANN benefits
more when the amount of unlabeled target user data increases.

7.2 Real-time Evaluations
In this section, we evaluate ViWatch in a real-time manner under
various disturbances. We recruited an additional 20 new partici-
pants. For each condition, participantswere asked to tap 120 random
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Figure 10: Performance comparison of
ViWatch against previous methods.

Figure 11: Performance comparison of
ViWatch against SOTA HAR methods.

Figure 12: Performance of the backbone
model and the Siamese DANN model.

Figure 13: Different 𝑇𝑡𝑟𝑎𝑖𝑛 sizes. Figure 14: The accuracy of the backbone
model for 20 unseen users.

Figure 15: Siamese DANN accuracy over
7 days.

keys we provided as a test set for three keyboards separately. This
test set is repeated multiple times under varying conditions. For
instance, the 120 samples are executed gently, then repeated with
more force. Note that we do not empirically evaluate false positive
of finger tapping here because existing work [11] has well addressed
this challenges by identifying finger-tapping signals from noisy
data, and we also only start detecting signals when users unlock the
touchscreen to turn on the app and perform the activate gesture.
As results from the three keyboards are similar, we only show their
average accuracy in this section.

7.2.1 Backbone Model. The additional 20 users we recruited have
different hand shapes. We asked participants to input the test set
by tapping on three keyboards using the same pre-trained model.
As shown in Figure 14, the average accuracy for 20 users is 90%
with 8.6% standard deviation. From Figure 14, we can see that the
accuracy is not good enough without the adaptation. Especially,
User 5 and User 7 have much lower accuracy. We believe this is
because these two users have much fatter hands than the others.
Note that different users (hand shapes) not only have different hand
shapes, but also may have different tapping strengths, and smart-
watch worn positions. Although we have collected 114 participants’
data for the training model, the accuracy can still be poor for un-
seen users, such as User 5 and User 7. In the following sections,
we used the Siamese adversarial deep learning algorithm based on
the backbone model to improve the accuracy with unlabeled data
generated from daily usage.

7.2.2 Adaptation over Time. In this experiment, we verify whether
ViWatch adapts to a specific user’s typing pattern using the Siamese
DANN training. We asked users to input the test set (120 random
keys for three keyboards separately) one time every day for one
week. To prevent noise of everyday activities from polluting the
dataset, ViWatch only detects tapping vibrations when users unlock
the smartwatch screen to turn on ViWatch and perform the activate
gesture. After each day, we update the models using the unlabeled
data generated by regular tapping. For example, the model update

process can be executed when users are sleeping. As shown in
Figure 15, the accuracies for seven days are 90.1%, 95.2%, 96.4%,
96.8%, 96.7%, 97.2%, and 97.1%, respectively. We have noticed a
big improvement in accuracy on the second day. This effectively
demonstrates that DANN adapts the model to specific users. The
accuracy then showed slight improvements over the followingweek.
Particularly for some previously unknown users, performance has
improved significantly. (e.g., the accuracy of user #5 in Figure 14
improves from 65% to 95%.)

7.2.3 Different Tapping Strength. After adaptation over a week,
We asked participants to input a test key sequence by tapping the
three keyboards gently. Then, we asked them to input the test set
again by tapping harder (for the one-hand control keyboard, and
we asked them to perform the gestures with different strengths in-
stead of tapping). The recognition accuracies for different strengths
are similar (97.2% and 97.4% respectively). Therefore, ViWatch is
resistant to different tapping/acting strengths.

7.2.4 Wearing positions of smartwatches. We further measured the
smartwatch displacement, which might impact the reliability of Vi-
Watch. We asked participants to tap the test set with seven different
smartwatch locations each. Location 0 means participants wear the
smartwatch on the wrist closest to the fingers, with a comfortable
tightness. We asked participants to input the test set with seven
smartwatch locations each, which moved the smartwatch away
from the fingers by 1mm, 4mm, 8mm, 12mm,20mm, and 30mm.
We observe that users can not move the watch more than 30mm
away from location 0 because the arm becomes thicker. On aver-
age, the classification accuracies are 97.1%, 97.4%, 96.9%, 97.2%,
96.8%, in order. Thus, ViWatch is resistant to the displacement of
smartwatches.

7.2.5 Different Tapping Fingers. We also questioned whether using
different fingers for tapping affects the system performance. We
asked participants to tap the test set using the index finger, middle
finger, and ring finger, in order. The results are 97.3%, 97.1%, and
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96.9%, respectively. Therefore, ViWatch is reliable to different tapping
fingers.

7.2.6 Arm Orientations. In practice, users might maintain different
gestures when they are tapping. To evaluate the impact of such
variations, we evaluated the system under three different gestures
of forearm rotation: (1) gesture 0 indicates that the plane of the
back of the hand is parallel to the ground, (2) gesture 1 indicates
the arm rotates 45 degrees outwards from gesture 0, (3) gesture 2
indicates the arm rotates 45 degrees inwards from gesture 0. The
accuracies are 96.9%, 97.1%, and 97.3%, respectively. The results
show that different arm rotations do not compromise the accuracy.

7.2.7 User States. To investigate how human mobility affects clas-
sification accuracy, we conducted an experiment to study the ac-
curacy of our system while walking and tapping simultaneously.
The accuracy is 96.5% on average. Washing hands is also a typical
activity that users complete many times a day. There is no impact
on the performance (97.2%) of ViWatch when testing on wet hands.

7.2.8 Different Smartwatches. Additionally, we asked participants
to wear different smartwatches to perform the test set. In addition
to the Huawei Watch2 that we have used to collect 100 participants’
data, we also use the ASUS Zenwatch 2, and the Madgaze Watch
for testing. The IMU sampling rates of them are 200Hz and 500Hz,
respectively. We match the sampling rate to the Huawei Watch 2.
To our surprise, the accuracy for ASUS Zenwatch 2 and Madgaze
Watch are 96.6% and 96.8%, respectively.We believe that different
types of IMUs should not impact the model performances.

7.3 Applications and User Study
In this section, we have developed four applications using ViWatch.
Then, by recruiting volunteers to experience these applications,
we evaluate system usability (SUS based standard method) and
workload (NASA-TLX). Regarding workflow index, we built and
asked volunteers to compare another system we built using super-
vised fine-tuning, in which users are allowed to collect and label
some data for the purpose of updating the model every time they
encounter variation.

7.3.1 Applications. To evaluate the user experience of ViWatch,
we implemented four representative applications. These applica-
tions are chosen to demonstrate the broad and important utility
of ViWatch. (1) smartwatch games: We developed a maze game
in the smartwatch, where the goal for users is to guide a ball to
move out of a maze. We use the four-direction keys in Figure 1 (b)
direction keyboard: up, down, left, right. (2) Remote controls for
smart headsets (can be extended to control many devices): Again,
We use the direction keyboard: up, down, left, right, back, and con-
firm. With this keyboard, users can make selections for menus in
smart headsets. (3) Shortcuts to activate apps that are usable in
smart spaces: We built a shortcut system in the smartwatch that
allows users to customize it. For example, when users tap on key 1
on the dial keyboard as shown in Figure 1(a), the smartwatch turns
on Google maps. When users tap on key 2 on the dial keyboard, the
smartwatch turns on the music player, etc. (4) One-hand controls:
We connected the smartwatch to Madgeze smart glasses and a lap-
top. We used one-hand controls to control smart glasses and play

Figure 16: SUS based standard user study result.

slides. Users first used one-hand controls to zoom in and zoom out
of a google map on the smart glasses. Then, they swung the palm
to the left/right to switch menus in the smart glasses. Additionally,
they used this keyboard to select and play YouTube videos. In the
end, users swing the palm to the left/right to switch slides on the
laptop.

ViWatch control is helpful for these applications. For example,
when users play video games on the watch, the small size touch
screen is fully covered by game videos and has no space for an
on-screen keyboard. For another example, users’ eyes are blocked
wearing a smart headset. Therefore, they can not see and control
the smartwatch touchscreen. However, tapping on the skin and per-
forming gestures are eyes-free. One-hand Controls are also helpful,
especially when a user’s hand is busy and not available. Most im-
portantly, there are more and more wearable devices with no touch
screen, such as some sport wristbands. ViWatch can be used to con-
trol these no-touch screen wearable devices, as well as controlling
smart IoT devices remotely.

7.3.2 User Experience. In this section, we study the system usabil-
ity and workload. We invited 20 participants to use each application
for 10 minutes per day for one week. We updated the model every
day by collecting users’ unlabelled data without users’ notice using
the Siamese adversarial neural network we proposed. After expe-
riencing these four applications for a week, we adopted the System
Usability Scale (SUS) [2] based standard method to study the user
experience. There are ten questions in the SUS [2]. Additionally,
we added another question related to smartwatch wearing: I do
not need to wear the smartwatch very tightly in order to use this
system. Figure 16 shows the scores and the results support that
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Figure 17: NASA Task Load Index.

ViWatch is comfortable, user-friendly, and easy to use.To be spe-
cific, the questionnaire asked questions with five response options
for respondents, from Strongly Agree to Strongly Disagree. The
questions and the results are as follows: (1) I think that I would
like to use this system frequently. (2 Not Sure, 8 Agree, 10 Strongly
agree) (2) I found the system unnecessarily complex. (15 Strongly
disagree, 4 Disagree, 1 Not Sure) (3) I thought the system was easy
to use. (4 Agree, 16 Strongly agree) (4) I think that I would need
the support of a technical person to be able to use this system. (3
Strongly disagree, 13 Disagree, 3 Not Sure, 1 Agree) (5) I found the
various functions in this system were well integrated. (5 Agree, 15
Strongly agree) (6) I thought there was too much inconsistency in
this system. (16 Strongly disagree, 4 Disagree) (7) I would imagine
that most people would learn to use this system very quickly. (1
Not Sure, 5 Agree, 14 Strongly Agree) (8) I found the system very
cumbersome to use. (18 Strongly disagree, 2 Disagree) (9) I felt very
confident using the system. (2 Not Sure, 7 Agree, 11 Strongly agree)
(10) I needed to learn a lot of things before I could get going with
this system. (14 Strongly disagree, 5 Disagree, 1 Not Sure) (11)I do
not need to wear the smartwatch very tightly in order to use this
system. (3 Agree, 17 Strongly agree)

As for the workload index, we built another system using su-
pervised fine-tuning, in which users collect and label some data
(10 taps for each key) to update the model every time when they
encounter variation. After experiencing both supervised and un-
supervised systems, we asked all participants to fill out the NASA
task load index (NASA-TLX) [1].

For the mental, physical, and temporal demand, both ViWatch
and supervised fine-tuning method have the same low scores (1
or 2), as shown in Figure 17. However, ViWatch has much better
performance than the comparison system (18 VS 10). Furthermore,
supervised fine-tuning caused much higher effort and frustration
scores than ViWatchEight participants reported that the compari-
son system accuracy was very low when they re-wore the watch on
another day, so they had to collect and label data again every day
for the supervised fine-tuning method, which was time-consuming
and frustrating. Twelve participants said they had to re-collect and
label data for the comparison system every two or three days. In
contrast, no participants needed to label and collect data using
ViWatch. The effort and frustration scores of ViWatch are very low
(2 and 3, respectively). ViWatch performance score is 18. Only one
participant said that the accuracy of ViWatch is low on the first
day usage. 19 participants said that although about 1 out of 10 taps
might be wrong on the first day, it is reluctantly acceptable. All
participants were surprised on the second day that the accuracy
of ViWatch became much better while another system’s accuracy
dropped a lot. Overall, all participants preferred our unsupervised
approach to supervised calibration.

8 DISCUSSION
We believe using Unsupervised Siamese Adaptation could be ap-
plied to different gestures and sensors in the future. Siamese net-
works can learn from unlabeled data, which makes them suitable
for a wide range of gestures and adaptable to different types of
sensors. The unsupervised nature of the network may allow it to
adapt to new contexts and expand its recognition capabilities. We
will study this in the future.

While we have made our best efforts to recruit volunteers and
collect a multi-user dataset, the size of our dataset is still limited.
In Section 7.1, the number of training users is capped at 100. While
the model accuracy shows a continuing increasing trend with more
training data, we are limited by the amount and the diversity of
the data. In the future, it would be interesting to explore the train-
ing dynamics and performance of our model with more extensive
and diversified datasets. For example, we can create multiple large
datasets, each containing numbers of users from different ethnic
groups, and explore how the model trained on one set will gen-
eralize on another as well as how Siamese-DANN will help this
transition.

However, keeping each user’s model up to date and managing
version control can be complex. We may use microservices archi-
tecture and automated deployment pipelines to manage models
efficiently. Also, training deep learning models requires significant
computational resources (GPU/CPU power, memory, storage) and
time.When scaled to millions of users, this could become unfeasible.
We believe it is important to study an efficient model for on-device
training in the future.

Furthermore, unsupervised learning is also affected by the qual-
ity of input data. If the data is noisy, incomplete, or inconsistent,
the model can produce less reliable results. Note that we do not
empirically evaluate false positive of finger tapping here because
existing work [11] has well addressed this challenges by identify-
ing finger-tapping signals from noisy data, and we also only start
detecting signals when users unlock the touchscreen to turn on the
app and perform the activate gesture.

There are several situations that ViWatch will fail the expecta-
tions. For example, when users grab an object on the hand which
wears the smartwatch. These touched objects significantly change
the hand vibrations and affect the system performance. For now,
users are instructed to use ViWatch without holding objects. We
will study this limitation in the future.

9 CONCLUSION
In this paper, we present ViWatch, the first robust fine-grained fin-
ger interactions with COTS smartwatches under deployment vari-
ations using unsupervised adaptation. During the development of
ViWatch, we explore the possibility of resistance to variations using
unlabeled data from the users. Therefore, we designed a novel unsu-
pervised Siamese adversarial training, which optimizes the domain
discriminator in a Siamese manner. Our approach is potentially
helpful for other time-series datasets on which deep learning model
performance suffers from variations. With this method, our final
online system achieves 97% accuracy under different deployment
variations, such as different hand shapes, finger activity strengths,
and smartwatch positions on the wrist. When compared with su-
pervised methods, ViWatch receives more favorable feedback.
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